
978-1-4799-2079-2/13/$31.00 c©2013 IEEE

Range Tree-Linked List Hierarchical Search
Structure for Packet Classification on FPGAs

Oğuzhan Erdem
Electrical and Electronics Engineering

Trakya University

Edirne, TURKEY 22030

Email: ogerdem@trakya.edu.tr

Aydin Carus
Computer Engineering

Trakya University

Edirne, TURKEY 22030

Email: aydinc@trakya.edu.tr

Abstract—Field Programmable Gate Arrays (FPGAs) satis-
fying the abundant parallelism and high operating frequency
demands are the most promising platform to realize SRAM-based
pipelined architectures for high-speed packet classification. Due
to the restrictions of the state-of-the-art FPGAs on the number
of I/O pins and on-chip memory, larger filter databases can
hardly be accommodated by the current approaches. Therefore,
new data structures which are frugal with the memory are
lately in high demand. In this paper, two stage range tree-
linked list hierarchical search structure (RLHS) is introduced
for packet classification. Our proposed structure comprising
range tree in Stage 1 and linked lists in Stage 2, resolves
backtracking and memory inefficiency problems in the pipelined
hardware implementation of hierarchical search structures. We
further present a categorization algorithm that partitions an input
ruleset based on the field characteristics of rules to reduce the
memory requirement. Each partition has an individual RLHS
with specialized node structures free from redundant fields used
for storing wildcards and range points. Our design is realized
on an SRAM-based parallel and pipelined architecture using
FPGAs to achieve high throughput. Utilizing a state-of-the-art
FPGA, RLHS architecture can sustain a 404 million packets per
second throughput or 129 Gbps (for the minimum packet size of
40 Bytes) while maintaining packet input order and supporting
in-place non-blocking rule updates.

I. INTRODUCTION

Due to the fast growth of the Internet, it has become a
great challenge to design high performance packet forwarding
engines. With the recent advancements in optical networking
technology, line speeds go beyond 100 Gbps [1]. To accommo-
date such high rates, an internet core router needs to process an
Internet Protocol (IP) packet in 3.2 ns, i.e. 312 million packet
per second (MPPS), for a minimum size (40 bytes) packet. As
the demand for high throughput routers increases, data path
functions such as packet classification and IP lookup requires
further investigations by the research community.

In packet classification, the incoming packets are cate-
gorized into flows by comparing multiple fields in a packet
header with the corresponding fields of a pre-defined set
of filters. The major design metrics in packet classification
are throughput, storage space, and dynamic update support.
Additionally, the preprocessing complexity, power consump-
tion, implementation cost and the scalability in terms of
the size of rulesets are the remaining crucial criterions. To
satisfy the high throughput demand in packet classification
engines, hardware-based approaches are mostly preferred by

router designers. These solutions can be categorized into two:
ternary content addressable memory (TCAM)-based and dy-
namic/static random access memory (DRAM/SRAM)-based.
Although TCAM-based engines can retrieve search results in
just one clock cycle, they have serious drawbacks compris-
ing low density, high cost, large access time, high power
consumption, poor arbitrary range support and poor multiple-
match support. On the contrary, an SRAM chip has lower
cost, less power consumption, much higher density and speed
as against a TCAM [2], [3]. SRAM-based solutions generally
utilize tree type data structures and therefore multiple cycles
are required to acquire a single search result. To ameliorate
the throughput, pipelining techniques are involved in such
solutions. Field Programmable Gate Arrays (FPGAs) having
unprecedented features such as reconfigurability, vast amount
of on-chip logic and abundant parallelism are the most con-
venient platform to realize these SRAM-based parallel and
pipelining architectures. However, due to the restrictions of
state-of-the-art FPGAs on the amount of I/O pins and on-
chip memory (BRAM), these solutions are unable to support
large rulesets. For this reason, memory efficient data structures
and resource efficient architectures have lately attracted a great
deal of attention from the researchers. This paper makes the
following major contributions:

• A ruleset categorization algorithm that partitions a
given ruleset into unique sub-rulesets based on the
field characteristics of rules (Section III-B).

• A hierarchical structure, named Range Tree-Linked
List Hierarchical Search Structure (RLHS) that ac-
complishes significant memory saving (Section III-C).

• Optimizations on categorization algorithm and RLHS
to further ameliorate memory and resource efficiencies
while achieving fixed search delay (Section IV).

• A high-throughput multi-pipelined SRAM-based ar-
chitecture on FPGAs that accommodates the proposed
search structure (Section V).

We arranged the rest of the paper as follows; Section
II comprises the background and prior work about packet
classification. Section III presents the partitioning algorithm
and RLHS data structure. Section IV covers the optimizations
on categorization algorithm and RLHS. Section V introduces
the RLHS architecture. Section VI exhibits the performance
evaluation results of proposed structure. Section VII concludes
the paper.

II. BACKGROUND

A. Packet classification overview

In packet classification, Internet Protocol (IP) packets
are classified into flows by comparing 5-tuple header fields
(Source IP address (SA), Destination IP address (DA), Source
Port Number (SP), Destination Port Number (DP), Protocol)
with the corresponding fields of rules in a ruleset or filter
database. Each rule in a ruleset have multiple fields with their
associated values, a priority value, and an action to be taken
if matched. Rule fields are specified by mixture of prefixes,
ranges, exact values and wildcards. A packet is considered
matching a rule if and only if all the header fields matches their
corresponding fields within that rule. Table I demonstrates a
sample ruleset.

TABLE I. SAMPLE 5-FIELD RULESET

Rule SA DA SP DP PRTCL Priority Action
R1 0* 10* [80, 80] * TCP 1 Act0
R2 0* 01* * * UDP 2 Act1
R3 0* 1* * [44, 44] TCP 2 Act2
R4 00* 1* [17, 17] * UDP 3 Act3
R5 00* 11* * [100, 100] TCP 4 Act4
R6 10* 1* * * UDP 5 Act5
R7 * 00* * * TCP 5 Act6
R8 0* 10* * [100, 100] TCP 6 Act7
R9 0* 1* [8, 100] * TCP 7 Act8
R10 0* 10* [17, 80] * UDP 7 Act9
R11 111* 000* [80, 80] * TCP 8 Act10

B. Related work

Packet classification algorithms can be categorized into
four groups: (1) exhaustive search [4], [5], (2) decomposi-
tion [6]–[8], (3) decision tree [9]–[11], and (4) hierarchical-trie
(H-trie) [12]–[16].

Exhaustive search comprises basic linear search and
TCAM-based parallel search. In both cases, all the entries
in a ruleset are analyzed. However in a linear search, the
header of a packet is compared with all the rules sequentially.
On the other hand, TCAM searches on entries are performed
simultaneously. Decomposition based approaches contain two
consecutive phases; (i) independent searches on each field and
(ii) merging results obtained from the first phase. Although
these solutions achieve high throughput, vast amount of storage
space is required to aggregate individual search results. Deci-
sion trees take the geometric view of the packet classification
problem. HiCuts [9] and its enhanced version HyperCuts [10]
are the most popular algorithms in this group. At each node
of the decision tree, the search space is cut into sub-spaces
based on the information from one or more fields in the rule.
These algorithms are easy to implement in both software and
hardware but their performance is much sensitive to the ruleset
structure and they have poor incremental update support.

Hierarchical-trie (H-trie) data structure is composed of a
single but large source address trie (SA tries) and multiple
small destination address tries (DA tries) which are hierar-
chically connected to that SA trie. SA and DA tries are
constructed using SA and DA prefix fields of rules. Each prefix
node in a SA trie points to a DA trie in the second stage.
Search starts from the SA trie. Once a prefix node in the SA
trie is encountered, search passes to the DA trie connected to
that prefix node. Even though a match can be found at any

0

0 0

1

1

1

1

1

0 1

1 0

0

0

1 0

0

0

[17,17] * UDP R4

* [100,100] TCP R5

* * UDP R2 [80,80] * TCP R1

* [100,100] TCP R8

[17,80] * UDP R10

* * TCP R7

* * UDP R6

[80,80] * TCP R11

111 000 80 100 TCP

SA Trie

DA Tries* [44,44] TCP R3

[8,100] * TCP R9

Fig. 1. Backtracking in H-trie structure

node in the DA trie, search has to backtrack to the SA trie
and continue to find other possible matches and choose the
highest priority one. When a leaf node or a null pointer is
reached in the SA trie, search ends. Since, the backtracking
causes stalling the pipeline in hardware implementations, the
realization of H-tries in hardware is not practical.

Set-pruning trie eliminates the backtracking by replicat-
ing the rules [12]. To eliminate the backtracking, Grid-of-
tries (GoT) [13] for 2-field packet classification stores each
rule into only one node by adding switch pointers to some
trie nodes. Extended Grid-of-tries (EGT) [14] improves the
previous idea by accommodating multiple fields. Although
EGT has good memory performance, high number of worst-
case memory accesses decreases the search time performance.
To enable hardware implementation, the authors of [15] pro-
posed Clustered Hierarchical Search Structure (CHSS) that
eliminates backtracking problem by dividing rulesets into
multiple clusters. Each cluster employs non-overlapping rules
and implemented using individual three-stage hierarchical data
structures. Two-stage hierarchical hybrid search structure that
also eliminates backtracking using the similar clustering ap-
proach were proposed in [16].

III. DATA STRUCTURE AND ALGORITHMS

A. Motivation

The hardware realization of hierarchical search structures
have two issues: (1) backtracking and (2) memory inefficiency.

Fig. 1 illustrates a H-trie structure constructed using the
rules in Table I. For this scheme, the backtracking occurs while
searching a 5-tuple IP packet header (SA = 111, DA = 000,
SP = 80, DP = 100, PRTCL = TCP). Even though,
the header firstly matches R7, backtracking is compulsory to
search for the other matches. In this figure, the blue lines
refer to forwarding search paths while the red dashed line
corresponds to a backtracking path. Eventually, R7 and R11

are reported as the matching rules however R11 is chosen as
the highest priority match.

The memory inefficiency in hardware implementation of
H-tries arises from the variety of the number of rules stored in
each node. In hardware implementation, the size of trie nodes
are initially fixed to a constant value that is determined by the
largest node in that trie. In this case, the unused memory spaces
in some nodes carrying only a few rules lead memory and

SA

F* (wildcard)
F!*(not wildcard)
F=(point)

DA SP

* * [SPlow , SPhigh]=[00...0, 11...1]

DP
[DPlow , DPhigh]=[00...0, 11...1]

!* !* [SPlow , SPhigh]!=[00...0, 11...1] [DPlow , DPhigh]!=[00...0, 11...1]

- - SPlow = SPhigh DPlow = DPhigh

(a)

SA*

SA!*

DA* DA!*

G1 G3

G2 G4

SP*

SP!*

DP* DP!*

Gi
1 Gi

2

Gi
4 Gi

5

SP=

DP=

Gi
7 Gi

8

Gi
3

Gi
6

Gi
9

(b)

(c)

G1 G2 G3 G4

SP or DP SA DA SA or DARange Tree Field

Group

G2
1

G2
2

G2
3

G2
4

G2
5

G2
6

G2
7

G2
8

G2
9

SPlow
(bits)

SPhigh
(bits)

Prtcl
(bits)

- - - - 8

- - 16 16 8

- - - 16 8

16 16 - - 8

16 16 16 16 8

16 16 - 16 8

- 16 - - 8

- 16 16 16 8

- 16 - 16 8

Total
(bits)

8

40

40

72

56

24

56

40

24

DPlow
(bits)

DPhigh
(bits)

(d)

(e)

SP*

SP!*

DP* DP!*

Gi
1

Gi
5

SP=

DP=

(f)

Gi
{3,7}

Gi
{2,4,9}

Gi
{6,8}

Fig. 2. (a) Field characteristics of rules (b) Step 1 of partitioning (c) Step 2 of
partitioning (d) Rule fields used for constructing RTs (e) The number of data
bits in a LL node for the sub-rulesets (f) Step 2 optimization of categorization
algorithm within G2

resource inefficiency. As an example, the hardware realization
of the H-trie presented in Fig. 1 needs a memory space for
17× 3 rules because the largest node has 3 rules and DA tries
includes 17 nodes. However, only 21.5% (11 rules) of the total
space is used.

In this paper, a hierarchical search structure comprising a
range tree (RT) in Stage 1 and linked lists (LL) in Stage 2
is proposed. RT divides the search space into disjoint range
intervals. Each node of the tree corresponds to an interval and
hence at most one match is possible in Stage 1. Thus, once the
search quits RT, it does not have to return back. Furthermore,
each node in LL carries at most one rule and hence memory
inefficiency is naturally solved. To further improve memory
efficiency, we also offer a rule categorization algorithm that
partitions the ruleset based on the field characteristics of rules.
For each partition, an individual data structure with specialized
node structures that are purified from redundant fields for
wildcards and some special ranges is constructed.

B. Rule Categorization

We categorize the rules in a given ruleset into sub-rulesets
based on field characteristics of rules such as wildcards in
fields and range properties. As shown in Fig. 2a, a field F in
a rule (excluding the protocol field) may have a (1) prefix/range
wildcard (F ∗) (2) prefix/range data other than wildcard (F !∗)
or (3) point if it is specified as a range (F=). Note that,
if a field F stores range data (e.g. SP, DP), this range is
specified by using range boundaries (e.g. [SPlow, SPhigh],
[DPlow, DPhigh]). If a lower and upper boundaries of a given
range are composed of all 0’s and 1’s respectively, then this
range covers all the space and denoted as range wildcard. On
the other hand, if a lower and upper boundaries of a given rule
are identical, this range corresponds to a point.

80-100

Rule Ilow Ihigh

R1 0 65535
R2 8 100
R3 17 17
R4 17 100
R5 80 222

0 655358 17 80 100 222

R1 R1 R1 R1 R1 R1
R2 R2 R2
R3 R4 R4

R5 R5

8-17

0-8 17-80

R1

Range tree stage

Linked List Stage

100-222

222-65535

R1

R2

R3

R1

R2

R4

R1

R2

R4

R5

R1

R5

R1

Fig. 3. RLHS data structure

Our categorization algorithm inputs a set of rules G and
outputs sub-rulesets Gj

i as a result of two partitioning steps.
Initially, our algorithm partitions the ruleset into 4 groups
based on SA and DA fields of rules, as shown in Fig. 2b.
Each group is indexed starting from 1 to 4 and the ith group
is represented as Gi. In this scheme, G1 contains the rules
whose SA and DA fields both carry wildcards and G2 (G3) is
composed of rules having only DA (SA) fields store wildcards.
Finally, G4 includes rules with none of the SA and DA fields
stores wildcard information. We further divide these groups
into more specific and smaller sub-groups (or sub-rulesets)
based on the range properties of SP and DP fields of rules as a
second step. Fig. 2c demonstrates the output of a second step
of partitioning. Each group Gi in Fig. 2b is now partitioned
into 9 sub-groups, recognized as Gj

i . For instance, a sub-ruleset
G1

i includes the rules which store wildcards in their both SP
and DP fields. Similarly, both SP and DP fields of rules in G9

i
represent a point in a range space.

C. Range Tree-Linked List Hierarchical Structure (RLHS)

As a result of the partitioning, the total number of 36 (4∗9)
sub-rulesets are obtained. We represent each set using a distinct
instance of a Range Tree-Linked List Hierarchical Search
Structure (RLHS) which comprises 2 stages:

Stage 1 (Range tree (RT) Stage): A range tree (RT) is
constructed for each sub-rulesets. Fig. 3 shows a sample range
table and its corresponding range tree. A range tree divides
the search space into disjoint range intervals and each node of
the tree corresponds to a single interval. In an RT, each node
comprises: (1) lower bound of interval (Ilow), (2) upper bound
of interval (Ihigh), (3) left pointer (AdL), (4) right pointer
(AdR) and (5) next stage pointer (AdN). The left subtree of
any node covers ranges whose upper bounds are less than or
equal to the lower bound stored in that node. Similarly, the
right subtree stores ranges whose lower bounds are greater
than the upper bound of that node. The construction of an
RT employs two steps; (i) determination of disjoint range
intervals (ii) selection of the correct interval (pivot) as root

3-7

0-3

10,2 80 TCP 1 R1

RT stage
LL Stage

14-15

1,1 17 UDP 3 R4

10,2 80 TCP 1 R1 000,3 80 TCP 8 R11

0-7

8-13

01,2 UDP 2 R2 1,1 UDP 5 R6

0-3

3-7

1,1 44 TCP 2 R3

11,2 100 TCP 4 R5

10,2 100 TCP 6 R8

1,1 44 TCP 2 R3

10,2 100 TCP 6 R8

0-7

1,1 80 100 TCP 7 R9

10,2 17 80 UDP 7 R10

0-3

TCP 5 R7

G3
1={R7} G4

1={R2,R6} G4
3={R3,R5,R8} G4

4={R9,R10} G4
7={R1,R4,R11}

Fig. 4. Range tree-Linked list Hierarchical Search Structure for the ruleset in Table I

and recursively building the left and right subtrees. Note that
if an RT is constructed using prefixes rather than ranges, prefix
to range conversion is also required before determination of
disjoint range intervals. This conversion is simply achieved
by appending ‘0’ and ‘1’ bits to a prefix to obtain lower and
upper bounds of the interval that is covered by that prefix.
For instance, a prefix 01* can be converted to the range
[4(0100), 7(0111)] in a 4-bit addressing space.

Stage 2 (Linked List (LL) Stage): Each node in a RT
points a linked list data structure in the second stage. Finally,
the number of LL instances equals to the number of nodes
of the RT in Stage 1. LLs are the most common and basic
data structures to store a series of data. Each node in a LL
comprises a data field and an address pointer to the next node
in the list. Each node in a single list stores a distinct rule as
shown in Fig. 3. However, all the rules stored in a single list
have the same range value represented by unique node of an
RT in Stage 1. The depth of a list depends on the number of
rules sharing the same range interval. In Fig. 3, the rules R1,
R2, R4 and R5 share the same range interval ([80, 100]) and
hence reside in the same list.

An unique RLHS data structure is built per sub-ruleset, Gj
i .

However, the rule field to build RT in Stage 1 and the node
structure of LL in Stage 2 are individually defined for each sub-
rulesets. Fig. 2d gives which fields be used for building RTs for
the sub-rulesets within the group Gi. On the other hand, Fig. 2e
shows the number of bits required for the data field of a LL
node in Stage 2 for the sub-rulesets within G2. For instance,
an RT is built using SA fields of rules in G1

2 and a LL node
stores only protocol information in its data field. Note that,
storing only the upper bounds for the range points is sufficient,
since the lower bounds are the same. Additionally, no memory
space is needed to represent the wildcards in fields in RLHS.
For the sub-rulesets within G4, SA or DA prefix bits and the
length of a prefix are also involved in the LL nodes. Due to
the space restrictions in this paper, node structure details for
the remaining sub-rulesets and update procedures are skipped.
Fig. 4 illustrates a RLHS data structure for the given set of
rules in Table I.

D. Packet Classification Algorithm

Prior to the search in RLHS, the header fields are extracted
from each arriving packet. The resulting frame is then for-
warded to all groups and search is performed in parallel in all
data structures as follows:

RT search: Search in RT is initiated from the root node
and the search frame traverses left or right, based on the
comparison result at each node. Once, the input key falls in a
specified range of any node, match occurs and search in RT
terminates. Next, search proceeds to traverse the connected
linked list in the following stage.

LL search: At each LL node, the remaining header fields
of the packet other than the one used in RT search are
compared with the corresponding fields of the rules stored
in that node, in parallel. The input key is considered to be
matched with a rule if and only if all the header fields matches
the corresponding rule fields. Search terminates, when all the
nodes in a LL is visited. Once there is a match in any node
and the priority value of the matched rule is higher than that
of the previous match, the search result is updated. Finally, the
outputs from all groups are fed into the priority encoder which
determines the highest priority one among all the matches.

Claim: Backtracking is not necessary in the search using
the proposed RLHS data structure.

Proof: The proposed RT structure ensures that all the nodes
in RT are disjoint. Thus, in Stage 1, at most one match is
possible and search does not have to return back to Stage 1,
once it quits for Stage 2.

IV. OPTIMIZATIONS

A. Optimization in categorization algorithm

Step 1: Based upon our observation on the rule sets
provided by class-bench [17], the amount of the rules that
fall in the category of G1 and G2 are reasonably small
when compared to the other groups. Consequently, we suggest
merging the groups G2 and G4 into a single group G{2,4}. On
the other hand, we suggest canceling Step 2 for all the sub-
rulesets within G1 and represent all using a single RLHS.

Step 2: As mentioned in Section III-B, the initial groups in
Step 1 are further categorized into 9 sub-groups. However, we
again suggest merging some of those sub-groups and reduce
the number from 9 to 5 per Gi as demonstrated in Fig. 2f

(G2
i ∪G4

i ∪G9
i → G

{2,4,9}
i , G3

i ∪G7
i → G

{3,7}
i , G6

i ∪G8
i →

G
{6,8}
i). The reason for this merging is the similarity of node

structures in some groups which can easily be mapped onto
a same data structure by only introducing a few identification
bits overhead to the nodes. Finally, the overall number of sub-

groups is reduced from 36 to 11 after the optimizations in
categorization algorithm.

B. Optimization in RLHS

We propose to set an upper bound for the depth of the LL
in Stage 2, named as PD which also limits the the number of
nodes that can be stored in a single LL. Setting an upper bound
can simply be achieved by merging some of neighboring range
intervals as soon as the final merged interval can contain at
most PD rules. For instance, if the two range intervals [8, 17]
and [17, 80] in Fig. 3 are merged, the new merged interval
([8, 80]) contains 4 unique rules. However, since the ranges of
rules are extended in this optimizations, each node in LL has
to keep the original ranges of rules as an overhead.

PD is a trade-off between the delay and the memory re-
quirement. However, small PD values may lead rule overflows.
In this cases, the overflowing rules that can not be located in
RLHS structure are stored in an auxiliary data structure or a
TCAM. We call the ratio of the number of rules stored in the
auxiliary structure over the total number of rules of the given
ruleset αT . Although this optimization causes to increase the
size of LL nodes, it brings the following advantages; (i) the
number of disjoint range intervals and hence the number of RT
nodes is substantially reduced and memory saving is achieved,
(ii) the delay can be optimized to satisfy the service and
resource requirements, (iii) the number of rule replications in
multiple intervals is reduced and hence the memory efficiency
is improved. In the given example above, the merged interval
([8, 80]) stores only 4 rules rather than 6 (3 + 3) rules.

V. ARCHITECTURE AND IMPLEMENTATION

Fig. 5a presents an overall block diagram of RLHS ar-
chitecture that is designed to accommodate the proposed data
structure. We used pipelining to attain high throughput. Each
sub-group comprises two consecutive pipelines; RT pipeline
and LL pipeline. Therefore the number of pipelines equals
to the number of sub-groups. The depth of the RTs and LLs
determine the number of stages in pipelines. RT structure in
Stage 1 is mapped onto the RT pipeline in which each stage
carries the nodes of a single level of the RT. A single LL
pipeline stores all the linked list structures that are connected
to the same RT. Similar to RT pipeline, each stage of a LL
pipeline stores a single level of linked lists. The proposed
architecture is realized on an FPGA platform.

Fig. 5b and c illustrates the single pipeline stages of
RT and LL pipelines respectively. An SRAM module and a
match module are involved in a single stage. SRAMs which
are used to maintain the nodes of the data structures are
implemented using on-chip BRAMs in FPGA board. Match
modules employed in both pipelines are used to compare the
input keys with the stored rule data in the BRAM. Based
on the comparison output, the address of the next node is
determined in RT pipeline and the search result is updated
if there is match in LL pipeline. To double the throughput
of the designed RLHS architecture, dual-ported BRAMs of
FPGAs having dual Read/Write ports are utilized in pipeline
stages and thus two packets can be processed in a single clock
cycle. Additionally, RHLS architecture can be extended with
external SRAMs to accommodate much larger rule databases.

Result

RT

LL

RT RT

LL LL

G1 G{2,4}
1 G3

{6,8}

Header extracter

Priority Encoder

(b)

(a) (c)

Incoming Packet

SRAM

Address Data Ihigh
Ilow

SP
DP
PRTCL

Address

DA

AdL

Match
Module

(RT)

RID
Rpri

Register

SA

AdR
AdN

SP

PRTCL

Address

Rpri

DP

RID

DA
SA

SRAM

Address Data SPhigh

DPhigh
DPlow

SPlow

Prtcl
Priority

Address
Action ID

Match
Module

(LL)

Register

DA
DAlength

SP

PRTCL

Address

Rpri

DP

RID

DA
SA

SP

PRTCL

Address

Rpri

DP

RID

DA
SA

Fig. 5. Multi-pipeline TTε architecture

0

10

20

30

40

50

60

70

80

16 20 24 28 32 36 40 44 48 52 56 60 64

M
em

or
y

(B
yt

e/
fil

te
r)

PD

Acl_real

Acl_100

Acl_1K

Acl_5K

Acl_10K

Fw_real

Fw_100

Fw_1K

Fw_5K

Fw_10K

Ipc_real

Ipc_100

Ipc_1K

Ipc_5K

Ipc_10K

Fig. 6. Memory efficiency for various PD values

However, the number of external SRAMs that can be used is
limited owing to the available I/O pins of FPGA device used.

VI. PERFORMANCE EVALUATION

A. Experimental Setup

The three different types of rule sets (Access Control List
(ACL), Firewall (FW), and IP Chain (IPC)) with each has
5 different sized sets (from 100 to 10K rules) provided by
class-bench [17] were used in simulations. The size of rulesets
are demonstrated in the second column of Table II. All the
optimizations proposed for the categorization algorithm and
RLHS structure are included in our simulations.

B. Memory requirement

The change of memory efficiency (byte per filter) and
αT value with respect to the PD value for each rulesets are
demonstrated in Fig. 6 and 7 respectively. Note that, PD = 40
ensures for all rulesets that the percentage of the overflowing
rules is less than 1% (αT ≤ 0.01)

Table II demonstrates the memory efficiency results of the
existing approaches for the same rulesets. Column 3 presents
the results of RLHS without optimization. The results of the
optimized RLHS with PD = 64 in Column 4 guarantees no
auxiliary storage is required (αT = 0). Note that all results are
presented in the number of bytes per rule. Additionally, the
depth of RT and LL structures are also included in Column
1 and 2 using (A - B) format, where A and B indicates the

TABLE II. MEMORY EFFICIENCY (BYTES PER RULE) FOR VARIOUS RULESETS

1 2 3 4 5 6 7 8 9 10
Ruleset N RLHS RLHSopt CHSS [15] TTε [16] EGT [14] HyperCuts [10] BV [8] Hybrid scheme [11]
ACL 752 45.44 (7 - 59) 52.92 (6 - 64) 25.11 22.08 25.41 32.58 71.80 N/A
ACL100 98 23.17 (5 - 13) 12.79 (1 - 64) 21.54 21.42 27.69 27.78 47.35 24.44
ACL1K 916 35.63 (7 - 49) 34.29 (6 - 64) 22.44 22.20 24.96 38.15 91.63 22.98
ACL5K 4415 37.83 (10 - 96) 17.91 (6 - 64) 23.95 21.44 24.87 59.64 257.23 24.83
ACL10K 9603 31.42 (12 - 24) 14.24 (7 - 64) 22.21 22.62 30.23 54.22 789.22 25.51
FW 269 15.39 (6 - 11) 10.54 (2 - 64) 21.76 10.48 25.31 399.18 40.72 N/A
FW100 92 11.32 (4 - 10) 8.83 (1 - 64) 27.53 10.37 23.42 113.37 27.46 56.63
FW1K 791 15.46 (7 - 26) 11.12 (3 - 64) 23.84 10.41 23.80 6110.58 67.08 215.06
FW5K 4653 20.89 (6 - 13) 11.40 (6 - 64) 35.37 13.27 39.04 16132.65 691.69 255.13
FW10K 9311 22.35 (6 - 13) 11.57 (7 - 64) 41.25 14.51 49.45 12554.18 1582.18 248.54
IPC 1550 18.57 (8 - 59) 17.09 (4 - 64) 21.80 21.64 26.63 128.52 61.57 N/A
IPC100 99 24.80 (6 - 6) 12.55 (1 - 64) 23.65 18.34 31.60 24.57 69.16 23.65
IPC1K 938 29.20 (9 - 20) 13.77 (1 - 64) 22.22 20.05 29.95 61.34 176.03 25.63
IPC5K 4460 27.82 (10 - 74) 17.11 (6 - 64) 21.72 21.56 27.62 406.80 358.61 49.46
IPC10K 9037 28.03 (11 - 70) 15.66 (7 - 64) 22.60 22.81 28.92 2378.35 788.69 43.30

0

0,5

1

1,5

2

2,5

3

3,5

16 20 24 28 32 36 40 44 48 52 56 60 64

T
(%

 o
f r

ul
es

 s
to

re
d

in
 T

C
AM

)

PD

Acl_real

Acl_100

Acl_1K

Acl_5K

Acl_10K

Fw_real

Fw_100

Fw_1K

Fw_5K

Fw_10K

Ipc_real

Ipc_100

Ipc_1K

Ipc_5K

Ipc_10K

Fig. 7. The percentage (%) of overflowing rules for various PD values

depth of RT and LL stages respectively. The performance re-
sults indicates that our algorithm provides significant memory
saving compared to the state of the art algorithms. Moreover,
the depth results proves that RLHS optimization reduces the
depth of RT where the depth of LL is fixed as 64.

C. Throughput

The proposed architecture was realized in Verilog, utilizing
Xilinx ISE 12.4. Xilinx Virtex-6 XC6VSX475T with −2 speed
grade was used as the target device. The post place and route
results points that our design can run at 202 MHz and is
capable of processing packets at the clock period of 4.95 ns.
Utilizing dual-ported BRAMs, the design can accommodate
404 million lookups per second (MLPS), or 129 Gbps for the
minimum packet size of 40 Bytes (or 320 bits).

VII. CONCLUSION

In this paper, range tree-linked list hierarchical search
structure is introduced. The backtracking problem for hier-
archical structures is naturally eliminated in our design. The
proposed algorithm accomplishes significant memory saving
when compared to the existing algorithms. To accommodate
the proposed data structure, we designed and implemented
a very high-throughput SRAM-based linear pipelined archi-
tecture. Furthermore, several optimizations were conducted to
improve the performance of the proposed design. As a future
work, we plan to extend the data structure to support packet
classification with more number of fields, such as OpenFlow.

REFERENCES

[1] S. Gringeri, E.B. Basch, and T.J. Xia, “Technical considerations
for supporting data rates beyond 100 Gb/s,” IEEE Communications
Magazine, vol. 56, no. 1, pp. 21–30, 2012.

[2] C.R. Meiners, A.X. Liu, and E. Torng, “TCAM SPliT: Optimizing
Space, Power, and Throughput for TCAM-based Packet Classification
Systems,” in Proc. ANCS, pp. 200–210, 2011.

[3] H. Song, and J.S. Turner, ”Toward Advocacy-Free Evaluation of
Packet Classification Algorithms,” IEEE Trans. Comput., vol. 60, no. 5,
pp. 723–733, 2011.

[4] T.B. Mishra and S. Sahni, ”PETCAMA Power Efficient TCAM
Architecture for Forwarding Tables,” IEEE Trans. Comput., vol. 61,
no. 1, pp. 3–17, 2012.

[5] D.E. Taylor, ”Survey and taxonomy of packet classification tech-
niques,” ACM Comput. Surv, vol. 37, no. 1, pp. 238–275, 2005.

[6] L. Sun, H. Le and V.K. Prasanna, ”Optimizing Decomposition-based
Packet Classification Implementation on FPGAs,” in Proc. ReConFig,
pp. 170–175, 2011.

[7] T. Ganegedara and V.K. Prasanna, ”StrideBV: Single Chip 400G+
Packet Classification,” in Proc. HPSR, pp.1–6, 2012.

[8] T. V. Lakshman and D. Stiliadis. ”High-speed policy-based packet
forwarding using efficient multi-dimensional range matching,” SIG-
COMM Comput. Commun. Rev., vol. 28, pp. 203214, 1998.

[9] P. Gupta and N. Mckeown. ”Packet classification using hierarchical
intelligent cuttings,” in Proc. HOTI, pp. 34–41, 1999.

[10] S. Singh, F. Baboescu, G. Varghese, and J. Wang, ”Packet classification
using multidimensional cutting,” in Proc. SIGCOMM, pp.213–224,
2003.

[11] W. Jiang, and V.K. Prasanna, ”Scalable packet classification: Cutting
or merging?,” in Proc. ICCCN, pp. 1–6, 2009.

[12] P. Tsuchiya. ”A search algorithm for table entries with non-contiguous
wildcarding,” Unpublished report, Bellcore.

[13] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. ”Fast and
scalable layer four switching,” SIGCOMM Comput. Commun. Rev.,
vol. 28, pp. 191202, 1998.

[14] F. Baboescu, S. Singh, and G. Varghese, ”Packet classification for
core routers: Is there an alternative to cams,” in Proc. INFOCOM, pp.
53–63, 2003.

[15] O. Erdem, H. Le, and V.K. Prasanna. ”Clustered hierarchical search
structure for large-scale packet classification on fpga,” in Proc. FPL,
pp.201–206, 2011.

[16] O. Erdem, H. Le, and V.K. Prasanna. ”Hierarchical hybrid search struc-
ture for high performance packet classification,” in Proc. INFOCOM,
pp.1898–1906, 2012.

[17] D. E. Taylor and J. S. Turner. ”Classbench: a packet classification
benchmark,” IEEE/ACM Transactions on Networking, vol. 15, pp.
499–511, 2007.

